Mesh网起初是用于监控操作。所以,Mesh通常运载传感器信号或控制信号。声音和视频一般不会包含在Mesh网中,虽然有些先进的Mesh网实现了声音和视频。这是因为监控操作包含的是相对简短的数据包,数据率会非常低。每秒几Kbits的速度通常算够快的,但如果需要更快的速度也可实现。典型的数据率范围是20~250Kbit/秒。
部分网状结构的主要好处可能是每个节点的范围被成倍地扩大了。大部分短距无线技术都有一个典型的最大范围:10米或更短。但是部分网状结构没有最大通信距离的限制,因为其它所有的节点都被用作中继器或路由器。
信号可以从一个节点传送到另一个节点,无限地扩大范围。在图2中,节点A通过以下路径传送信号到节点L:A-B-E-M-I-L。另一替代路径为:A-C-D-F-L。也还有其它几种冗余的路径。要传输的数据被放在一个数据包里,数据包从一个节点“跳跃”到另一个节点,直到到达目的地。
在大多数的应用里,节点努力把数据放到一个集中点或者叫接入点,像图2的M。然后,数据会被汇总并发送到局域网(LAN)、城域网(MAN)或广域网(WAN)进一步传送(比如生产企业内部的局域网或互联网)。
网状拓扑的常见变异体是由好几个点到多点(PMP)星形网络组成的混合体。在混合体里,多个节点直接和一个中心对等节点或接入点(AP)对话。然后多个AP被连接在一个Mesh架构里。
不至一条路径穿行在网状中,这一事实也引出Mesh网带来的另一主要好处:可靠性。如果由于信号通道阻塞、坏节点或多重路径衰减,一条路径失败了,信号还可找到一条或多条替代路径。如果一个节点的电池没电了,它会从网络中退出来,其他节点却能经由可供选择的跳跃来转接数据。
人、车辆或设备的移动有时也会阻碍先前很好的无线路径。此外,来自另一终端的暂时干扰或意外的噪声脉冲也会阻止传输。同样的,Mesh网又可自动地找到另一路径。
节点的总数是Mesh网一个重要的考虑点。为从多重跳跃路径中受益,要求有很多节点。绝对最小的Mesh网架构是3个节点。然而增加更多的节点会大大提高Mesh网的可靠性和强健性。
Mesh网的延展性也很好。起初,它们可能由只有一打左右的节点组成,然而它们却能毫不困难地延展到数百个或者甚至成千上万个节点。
另外,Mesh网是自配置的。节点自动相互找寻,如果他们在范围内,还会自动建立一个链接。这被称为移动临时网状网(ad hoc network)。如果节点是移动的,网络会持续并自动地重组到参与活动的节点上。
新的节点可随时被增加。如果被加的节点和现有的节点链接太远了,可在中间加个额外的转发器来建立链接。有了小小的,低价的节点,这一方法仍比大多数应用里的配线要便宜。
节能突出Mesh网用电也很少。因为节点间的距离很短,用来建立可靠通信的传送功率就会很低。而且事实上,一些节点可以用电池运行。
由于节点以脉冲的方式传送数据包,这些节点可能会睡着了,引起的电流仅有微安培。只有当要转接信号或要发送信息时才醒过来。工作负载循环可能仅为0.1%~1.0%,大大地减少了功率消耗。电池寿命可长达数月到数年,不需要经常维护。
虽然自配置、自修复的Mesh网有众多好处,但它们也有一个软肋,就是安全性问题。如果没有受到保护,Mesh网络会被黑客入侵和盗取。然而用加密的方法就可实现保护,如高级加密系统(AES)。
对一些应用来说,Mesh网的另一个缺点就是延时。节点要花一定的时间苏醒过来传递数据。而且,每一次跳跃也需要一定的时间。节点间的延时总数可达5~30毫秒。对于一些有决定性意义的工业控制应用来说,这样的速度可能不够快。但是,在很多情况下,这种延时不是什么问题。
无线电干扰如果现在有很多可供选择的单片无线收发器,哪一个是最适合Mesh网的呢?答案在于应用。例如,设计者们不能用便宜的ISM-band(工业科学医疗频段)IC在315MHz,433MHz和915MHz频段下运行是没有为什么的。蓝牙是另一种可能的选择。
当明年出现更多便宜的超宽带(UWB)收发器时,这扇大门会向高速短距的Mesh网打开。对于消费类电子产品,就可用它把房子四处的各种影音设备全连在一起。UWB的最大数据率,在无线USB或直接序列UWB下分别是480Mbits/秒和1Gbit/秒。
共6页: 上一页 [1] 2 [3] [4] [5] [6] 下一页
|