本方案的AP不能同时发送和接收数据。而且在其覆盖范围内另一个AP正在传输的时候,该AP也不能发送数据。这种对可用共享带宽的竞争是基于类似以太网的无线冲突避免原则(CSMA/CA)。
简单计算一下就会发现,在单频方案中每个无线客户端只能获得很有限的吞吐量。举例来说,假设你有5个AP,每个AP有20个无线客户端与之相连,所有的AP和客户端共享同一个802.11b信道(5Mbps),这样等价于每个用户只能获得少于50Kbps的吞吐量——比拨号连接还要慢。而且由于所有的无线客户端和AP必须工作在同一个信道上,无线资源的竞争和RF干扰还会导致不可预期的时延。
双频方案——回程共享
在双频方案中,一个频道专门用来连接无线客户端,而另一个频道专门用来进行无线回程传输——回程信道同时由ingress和egress流量共享。这意味着什么呢?无线客户端流量将得到一些的改善,但是全网的性能仍然由于回程的瓶颈问题而不理想。
多频方案——结构化的无线mesh
在多频(或者称作结构化mesh)方案中,每个网络节点至少使用三个频道的专用无线链路接口,其中一个频道用于客户端的流量,第二个频道用于ingress无线回程流量,第三个频道用于egress无线回程流量。这个无线mesh网络的方案与单频或双频方案相比提供了很好的性能。因为每个链路都工作在独立的信道上,专用的回程链路可以同时发送和接收数据。
多跳的难题
多跳的难题包括带宽降低、无线干扰和网络时延问题,这些问题是由于流量需要在无线mesh网络中进行多次“跳跃”所引起的。
带宽降低
当回程被共享的时候,多跳带来的带宽降低的问题尤为严重,比如单频和双频方案。在这些情况下,每个从AP到AP“跳越”的流量,其吞吐量都几乎会被削减了一半。对于这类带宽降低模式主要有两个原理。
不管你选择最佳情景原理的降低为1/n(其中n是跳数),还是选择最坏情景原理的降低为1/2n-1,带宽降低的数量都是现实存在的,参见下表。
最佳情况的场景是假设所有的节点都以线性的方式排列,类似于一个珍珠串,每个节点只能和它两个邻接的节点通信。但是在实际部署的mesh网络中,任何一个节点都能“侦听”到至少3个或4个邻接的节点。这时,带宽降低更加类似于最坏情况的情景。下图说明了802.11a/g和802.11b采用单频方案在最佳情况的场景下吞吐量降低的情况。
在802.11b情况下,此表的起始吞吐量为5 Mbps--因为802.11b任何信道的毛数据速率为11 Mbps,其有效吞吐量接近于5 Mbps。类似地,802.11a/g的有效吞吐量接近于24 Mbps。正像前表中所显示的一样,即使在最佳情景的时候,对于中等规模和大规模环境,带宽的损失也是不可接受的。
共7页: 上一页 [1] [2] 3 [4] [5] [6] [7] 下一页
|